

Montage- und Bedienungsanleitung Frischwassermodul FriwaMega - DN 32

Inhaltsverzeichnis

1	Allgemeines	.3
1.1	Geltungsbereich der Anleitung	3
1.2	Zu diesem Produkt	4
1.3	Bestimmungsgemäße Verwendung	5
2	Sicherheitshinweise	.6
3	Produktbeschreibung	8
4	Auslegung und Planung	.10
4.1	Auslegung des Speichers	12
4.2	Anforderungen an die Wasserbeschaffenheit	13
5	Zirkulationsbetrieb	15
6	Montage und Installation [Fachmann]	16
7	Inbetriebnahme [Fachmann]	19
7.1	Füllen des Primärkreises	20
7.2	Inbetriebnahme des Reglers	.21
7.3	Einstellen der Temperatur	23
7.4	Maximaler Zapfvolumenstrom	.24
8	Instandhaltung	27
8.1	Inspektion	27
8.2	Wartung	.28
9	Lieferumfang [Fachmann]	29
9.1	Ersatzteile Regler und Isolierung	29
9.2	Ersatzteile Primärkreis	30
9.3	Ersatzteile Sekundärkreis	31
10	Technische Daten	.33
10.1	Druckverlust- und Pumpenkennlinien	34
10.2	Maßzeichnung	35
11	Entsorgung	.37
12	Inbetriebnahmeprotokoll	38
13	Notizen	39

1 Allgemeines

Lesen Sie diese Anleitung vor der Installation und Inbetriebnahme sorgfältig durch. Bewahren Sie diese Anleitung zum späteren Gebrauch in der Nähe der Anlage auf.

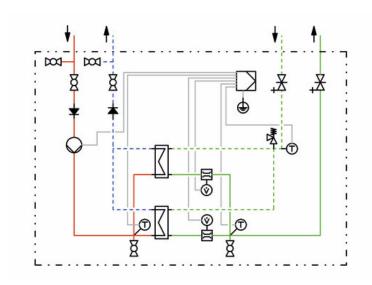
1.1 Geltungsbereich der Anleitung

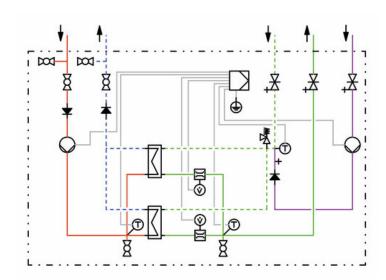
Diese Anleitung beschreibt die Funktion, Installation, Inbetriebnahme und Bedienung des Frischwassermoduls FriwaMega. Die mit [Fachmann] bezeichneten Kapitel richten sich ausschließlich an den Fachhandwerker.

Für andere Komponenten der Anlage, wie Speicher, Regler und Pumpen beachten Sie bitte die Anleitungen des jeweiligen Herstellers.

Station	Artikel- nummer	Regler FC3.10	Pumpe primär	Zirkulation	Wärmetauscher	
	6407511		Grundfos	Optional:	Kupferlot, 2 x 60 Platten	
FriwaMega	6407530		- 	UPMXL GEO 25-125	6404135GH10	beschichtet, 2 x 60 Platten
FriwaMega mit	6407517		Grundfos	Grundfos	Kupferlot, 2 x 60 Platten	
Zirkulation	6407535		UPMXL GEO 25-125	UPML 25-105 N	beschichtet, 2 x 60 Platten	

Diese Artikel fallen unter Artikel 4 Absatz 3 der Druckgeräterichtlinie 2014/68/EU und sind in Übereinstimmung mit der guten Ingenieurpraxis ausgelegt und hergestellt.


Das Frischwassermodul entspricht den relevanten Richtlinien und ist daher mit der CE-Kennzeichnung versehen. Die Konformitätserklärung kann beim Hersteller angefordert werden.


1.2 Zu diesem Produkt

Die FriwaMega ist ein Frischwassermodul, das Trinkwasser nach dem Durchlauferhitzerprinzip erwärmt.

Das Frischwassermodul ist eine vormontierte und auf Dichtheit geprüfte Armaturengruppe zur Wärmeübertragung zwischen dem Pufferspeicher und dem Trinkwasserkreis. Sie enthält einen voreingestellten Regler sowie wichtige Armaturen für den Betrieb der Anlage:

Frischwassermodul ohne Zirkulation

Frischwassermodul mit Zirkulation

- Vormontierter Regler
- Kugelhähne im Primärkreis
- Temperatursensor am
 Trinkwarmwasseraustritt
- Temperatursensor am Kaltwasserzulauf
- KFE-Hahn zum Entleeren der Wärmetauscher im Primärund Sekundärkreis
- Sicherheitsventil im Sekundärkreis
- Kolbenventile im Sekundärkreis
- Volumenstromsensor am Trinkwarmwasseraustritt
- Temperatursensor am Heizungsvorlauf
- Entlüftungseinrichtung primär und sekundär zum
 Entlüften der Wärmetauscher

1 Allgemeines

1.3 Bestimmungsgemäße Verwendung

Das Frischwassermodul darf nur in Heizungsanlagen zwischen dem Pufferspeicher und dem Trinkwasserkreis montiert werden. Es darf bauartbedingt nur vertikal montiert und betrieben werden! Die in dieser Anleitung angegebenen technischen Grenzwerte müssen berücksichtigt werden.

Verwenden Sie ausschließlich PAW-Zubehör in Verbindung mit dem Frischwassermodul. Die bestimmungswidrige Verwendung führt zum Ausschluss jeglicher Haftungsansprüche.

Nehmen Sie das Modul nicht in Betrieb, wenn sichtbare Beschädigungen bestehen.

2 Sicherheitshinweise

Die Installation und Inbetriebnahme sowie der Anschluss der elektrischen Komponenten setzen Fachkenntnisse voraus, die einem anerkannten Berufsabschluss als Anlagenmechaniker/in für Sanitär-, Heizungs- und Klimatechnik bzw. einem Beruf mit vergleichbarem Kenntnisstand entsprechen [Fachmann].

Bei der Installation und Inbetriebnahme muss Folgendes beachtet werden:

- Einschlägige regionale und überregionale Vorschriften
- Unfallverhütungsvorschriften der Berufsgenossenschaft
- Anweisungen und Sicherheitshinweise dieser Anleitung

Verbrennungsgefahr!

Armaturen und Pumpe können während des Betriebs bis zu 95 °C heiß werden.

▶ Die Isolierschale muss während des Betriebs geschlossen bleiben.

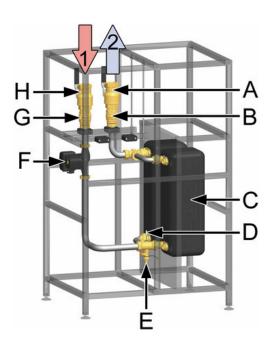
WARNUNG

Funktionsstörung!

Das Frischwassermodul muss in den Potenzialausgleich der Elektroinstallation integriert werden. Dies kann durch eine vorschriftsmäßige Potenzialausgleichsverbindung zum Hauptpotenzialanschluss oder durch das angeschlossene Rohrleitungsnetz sichergestellt werden.

6 9964075x-mub-de - V02 05/2024

HINWEIS

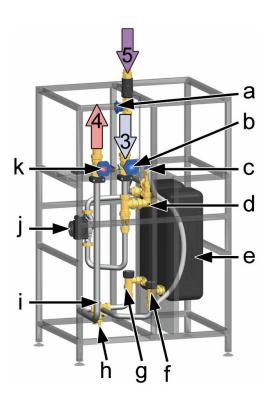

Sachschaden durch Mineralöle!

Mineralölprodukte beschädigen die EPDM-Dichtungselemente nachhaltig, wodurch die Dichteigenschaften verloren gehen. Für Schäden, die durch derartig beschädigte Dichtungen entstehen, übernehmen wir weder eine Haftung noch leisten wir Garantieersatz.

- ▶ Vermeiden Sie unbedingt, dass EPDM mit mineralölhaltigen Substanzen in Kontakt kommt.
- Verwenden Sie ein mineralölfreies Schmiermittel auf Silikon- oder Polyalkylenbasis, wie z. B.
 Unisilikon L250L und Syntheso Glep 1 der Firma Klüber oder Silikonspray.

3 Produktbeschreibung

Anschlüsse Primärkreis


- 1 Vorlauf vom Pufferspeicher (warm)
- 2 Rücklauf zum Pufferspeicher (kalt)

Ausstattung Primärkreis

- A Rücklauf-Kugelhahn
- B Schwerkraftbremse
- C Wärmetauscher
- D Temperatursensor Pt1000
- E KFE-Hahn
- F Primärpumpe
- G Schwerkraftbremse
- H Vorlauf-Kugelhahn

8 9964075x-mub-de - V02 05/2024

Anschlüsse Sekundärkreis

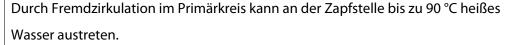
- 3 Kaltwasser-Eintritt
- 4 Warmwasser-Austritt
- 5 Warmwasser-Zirkulation

Ausstattung Sekundärkreis

- a Kolbenventil Warmwasser-Zirkulation
- b Kolbenventil Kaltwasser-Eintritt
- c Sicherheitsventil 10 bar, trinkwassertauglich

Nur zur Absicherung der Station. Ersetzt nicht das bauseits vorzusehende Sicherheitsventil!

- d Temperatursensor Pt1000
- e Wärmetauscher
- f + g FlowSonic 1-130 l/min
- h KFE-Hahn
- i Temperatursensor Pt1000
- j Zirkulationspumpe
- k Kolbenventil Warmwasser-Austritt



4 Auslegung und Planung

Für die einwandfreie Funktion des Frischwassermoduls muss die Anlage bestimmte Voraussetzungen erfüllen. Nehmen Sie sich vor der Montage etwas Zeit für die Planung.

WARNUNG

Verbrühungsgefahr durch heißes Wasser!

- Es dürfen keine externen Pumpen zwischen dem Frischwassermodul und dem Pufferspeicher installiert sein.
- Das Frischwassermodul darf nicht an einen Heizkreisverteiler angeschlossen werden.

Montagebeispiel:

FriwaMega mit optionalem Zirkulationsset (bauseits, Art. Nr. 6404135GH10) sowie Sicherheitsgruppe nach DIN 1988 (bauseits).

HINWEIS

Einsatz von Begleitheizbändern

Installationen ohne Zirkulationsleitung mit einem erhöhten Rohrleitungsinhalt können dazu führen, dass bei längeren Zapfpausen die Temperatur in den Rohrleitungen stark absinkt. Dadurch kommt es zu einem verzögerten Startverhalten der Frischwasserstation, die Ausregelung der eingestellten Solltemperatur wird dadurch verlangsamt.

Bei einem Einsatz von elektrischen Begleitheizungen in Kombination mit kurzen Zapfungen kann sich dieser Effekt ausprägen. Es besteht die Gefahr, dass aufgrund des verzögerten Startverhaltens unterschiedliche Temperaturbereiche in der Trinkwarmwasserleitung entstehen. Dies kann bei anschließenden längeren Zapfungen zu anfänglich schwankenden Austrittstemperaturen führen.

Aus diesem Grund wird von der Nutzung einer elektrischen Begleitheizung abgeraten. Sollte eine Installation unumgänglich sein, werden folgende Schritte empfohlen:

- ▶ Bei einer langen Rohrstrecke zwischen Pufferspeicher und Frischwasserstation sollte die Komfortfunktion aktiviert werden (erhöhte Verkalkungsneigung). Wir empfehlen möglichst kurze Installationswege zwischen Pufferspeicher und Friwa.
- ► Vermeiden Sie kurze Zapfungen.
- Statt einer überdimensionierten Frischwasserstation, empfehlen wir eine Kaskadierung von mehreren kleineren Stationen.

Optimaler Betrieb der Station

Um eine optimale Regelung zu gewährleisten, sollten möglichst keine zusätzlichen hydraulischen Druckverluste an der Primärseite entstehen (z.B. durch den Einbau eines Schlammabscheiders, Schmutzfängers oder Mischers).

4.1 Auslegung des Speichers

Anhand der folgenden Tabelle können Sie das in etwa benötigte Bereitschaftsvolumen des Pufferspeichers berechnen.

Temperatur im	Am Regler eingestellte	Erforderliches Speichervolumen
Pufferspeicher	WW-Temperatur	je Liter WW
50 °C	45 °C	1,2 Liter
	45 °C	0,8 Liter
60 °C*	50 °C	1,0 Liter
	55 °C	1,3 Liter
	45 °C	0,6 Liter
70 °C	50 °C	0,7 Liter
	55 °C	0,9 Liter
	45 °C	0,5 Liter
80 °C	50 °C	0,6 Liter
	55 °C	0,7 Liter

Beispielrechnung für die Auslegung des Pufferspeichers:

Temperatur Pufferspeicher: 60 °C

Erforderlicher Zapfvolumenstrom am Wasserhahn: 20 l/min

Am Regler eingestellte TWW-Temperatur: ca. 45 °C

Wie groß muss der Speicher sein, wenn eine 20-minütige Zapfung ohne Nachheizung erfolgen soll?

20 l/min x 20 min = 400 l

 $400 \mid x \mid 0.8 = 320 \mid$

Der erwärmte Teil des Pufferspeichers muss 320 Liter groß sein.

4 Auslegung und Planung

4.2 Anforderungen an die Wasserbeschaffenheit

Die Frischwassermodule vermindern konstruktiv die Ausfällung von Kalk im Wärmetauscher. Bei Anlagen mit einer hohen Gesamthärte des Trinkwassers und/oder hohen Temperaturen wird eine Wasseraufbereitung empfohlen. In Abhängigkeit der chemischen Zusammensetzung des Wassers am Installationsort ist die Auswahl und Eignung des Plattenwärmetauschers zu prüfen. Beachten Sie nachfolgende Tabelle: Einfluss der Wasserbeschaffenheit auf die Korrosionsbeständigkeit bei Trinkwasseranwendungen

Wasserinhalt	Konzentration (mg/l oder ppm)	Zeitgrenzen	Wärmetauscher mit Kupferlot	Wärmetauscher mit Sealix®- Versiegelung
	< 70		0	+
Alkalität (HCO ₃ -)	70-300	Innerhalb von 24 Std.	+	+
	> 300	21300.	0/+	+
	< 70		+	+
Sulfat (SO ₄ ²⁻)	70-300	Keine Grenze	0/-	+
	> 300		-	+
HCO ₃ -/SO ₄ 2-	> 1.0	Keine Grenze	+	+
псо ₃ / 30 ₄	< 1.0	Keine Grenze	0/-	+
F1 1. · · · 1	< 10 μS/cm		0	+
Elektrische Leitfähigkeit	10-500 μS/cm	Keine Grenze	+	+
zeitiaingiteit	> 500 μS/cm		0	+
	< 6.0		0	+
	6.0-7.5		0	+
pH-Wert	7.5-9.0	Innerhalb von 24 Std.	+	+
	9.0-10	2.366.	0	0
	> 10.0		0	-
	< 2	Leave and the	+	+
Ammonium (NH ₄ ⁺)	2-20	Innerhalb von 24 Std.	0	+
	> 20	2.366.	-	-

Wasserinhalt	Konzentration (mg/l oder ppm)	Zeitgrenzen	Wärmetauscher mit Kupferlot	Wärmetauscher mit Sealix®- Versiegelung
	< 100		+	+
Chloride (Cl ⁻)	100-200	Keine Grenze	+	+
Cilionae (Ci)	200-300	Reille Grenze	+	+
	> 300		0/+	0
	< 1		+	+
Freies Chlor (Cl ₂)	1-5	Innerhalb von 5 Std.	0	0
	> 5	J July	0/-	0
Schwefelwasserstoff	< 0.05	Keine Grenze	+	+
(H ₂ S)	> 0.05	Reille Grenze	0/-	0
Fusion (a repusations)	< 5		+	+
Freies (aggressives) Kohlendioxid (CO ₂)	5-20	Keine Grenze	0	+
	> 20		-	+
Gesamthärte (°dH)	4.0-8.5	Keine Grenze	+	+
Nitrate (NO ₃ -)	< 100	Keine Grenze	+	+
Withate (NO ₃)	> 100	Neme dienze	0	+
Eisen (Fe)	< 0.2	Keine Grenze	+	+
Liseii (i e)	> 0.2	Reille Grenze	0	+
Aluminium (Al)	< 0.2	Keine Grenze	+	+
Aluminium (Al)	> 0.2	Neille Grenze	0	+
Mangan (Ma)	< 0.1	Keine Grenze	+	+
Mangan (Mn)	> 0.1	Neille Grenze	0	+

- + Gute Beständigkeit unter normalen Bedingungen
- 0 Korrosion kann dann auftreten, speziell wenn weitere Faktoren mit 0 bewertet sind
- Verwendung wird nicht empfohlen

5 Zirkulationsbetrieb

Das Modul ist (optional) mit einer Zirkulationspumpe ausgestattet. Module ohne Zirkulation können nachträglich mit einem Zirkulationsset für die interne Nachrüstung ausgestattet werden.

Für den Betrieb der Zirkulationspumpe sind im Regler drei mögliche Betriebsarten hinterlegt (siehe Bedienungsanleitung des Reglers, Kapitel *Zirkulation*).

• Impulsgesteuerter Betrieb (bedarfsabhängig / Anforderung):

Durch die kurze Betätigung einer Warmwasser-Zapfstelle (Zapfimpuls: unter 5 Sek.) wird die Zirkulationspumpe gestartet. Die Zirkulationspumpe läuft dann für einige Minuten (einstellbar).

• Zeitabhängiger Betrieb:

Der Betrieb der Zirkulationspumpe ist innerhalb frei wählbarer Zeiträume an einer Wochenuhr einstellbar. Bei dieser Betriebsart wird die Zirkulation zu Beginn des eingestellten Zeitraumes gestartet. Die Zirkulation wird nach dem Ablauf des eingestellten Zeitraumes abgeschaltet.

• Temperaturabhängiger Betrieb:

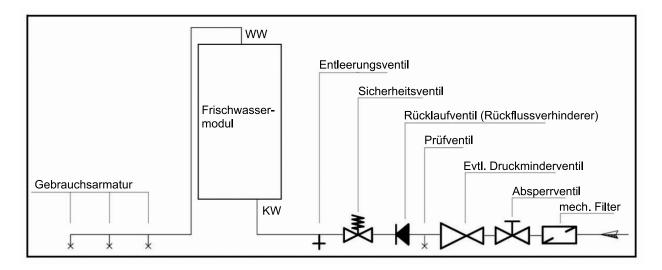
Bei dieser Betriebsart wird die Zirkulation nur gestartet, wenn die einstellbare Minimaltemperatur am Zirkulationstemperatur-Sensor unterschritten wird. Die Zirkulation wird nach dem Erreichen der einstellbaren Abschalttemperatur abgeschaltet.

Die Betriebsarten können beliebig kombiniert werden, z.B. zeit- und temperaturabhängiger Betrieb. Die Zirkulation ist dabei nur aktiv, wenn die Temperatur am Zirkulationstemperatur-Sensor unterschritten ist und das Zeitfenster aktiv ist.

Bei zusätzlich aktiviertem, impulsgesteuerten Betrieb läuft die Zirkulationspumpe während des Zeitfensters kontinuierlich und kann außerhalb des Zeitfensters über einen Zapfimpuls aktiviert werden. Ein vorzeitiges Abschalten erfolgt beim Überschreiten der eingestellten Abschalttemperatur.

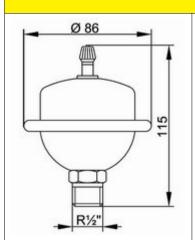
HINWEIS

Sachschaden!


Im Auslieferungszustand ist die Zirkulation nicht aktiviert (siehe Bedienungsanleitung des Reglers, Kapitel *Zirkulation*). Die Betriebsart muss zwingend gewählt und voreingestellt werden. Die Drehzahl der Zirkulationspumpe wird über das PWM-Signal vorgegeben (Werkseinstellung: 40 %).

6 Montage und Installation [Fachmann]

Das Frischwassermodul darf nur über eigene Speicherstutzen für den Vor- und Rücklauf an den Pufferspeicher angeschlossen werden. Es dürfen keine externen Pumpen zwischen dem Frischwassermodul und dem Pufferspeicher installiert sein. Fremdzirkulation bewirkt starke Temperaturschwankungen.


Der Trinkwasser-Anschluss ist nach den einschlägigen Normen (z.B. DIN 1988) vorzunehmen!

HINWEIS

Sachschaden!

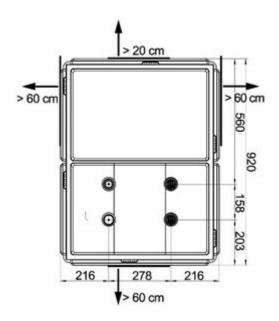
Das Sicherheitsventil, das in der Station integriert ist, ersetzt nicht die Sicherheitseinrichtungen des Trinkwasser-Anschlusses nach DIN 1988. Das Sicherheitsventil schützt die Station lediglich vor Überdrücken im Wartungsfall.

HINWEIS

Sachschaden!

Sind am gleichen Netz wie das Frischwassermodul Entnahmestellen angeschlossen, bei denen Druckstöße möglich sind (z.B. Druckspüler, Wasch- oder Spülmaschinen), empfehlen wir den Einbau von Wasserschlagdämpfern in der Nähe des Druckstoßverursachers.

WARNUNG

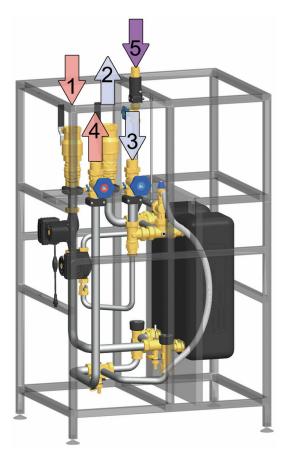

Gefahr für Leib und Leben durch Stromschlag!

- Ziehen Sie vor elektrischen Arbeiten am Regler den Netzstecker!
- Stecken Sie den Netzstecker erst nach Abschluss aller Arbeiten in eine
 Steckdose. So verhindern Sie ein unbeabsichtigtes Anlaufen der Motoren.

HINWEIS

Sachschaden!

Um Schäden an der Anlage zu verhindern, muss der Montageort trocken, tragsicher, frostfrei und vor UV-Strahlung geschützt sein.


- Legen Sie den Montageort des Frischwassermoduls in der N\u00e4he des Pufferspeichers fest.
 - Bei langen Anschlussleitungen verringert sich die Übertragungsleistung aufgrund höherer Druckverluste im Primärkreis.
- 2. Entfernen Sie die Verpackung der Station.
- Nehmen Sie die Station von der Palette und stellen Sie diese an den Montageort.
- Montieren Sie die beiliegenden Gestellfüße, um Unebenheiten des Untergrunds auszugleichen.
- 5. Die Station kann zweiseitig an die Wand gestellt werden. Wenn Sie die Isolierung abnehmen wollen, muss ein Freiraum von ca. 20 cm zur Wand freigelassen werden (siehe Abbildung).
- 6. Für die Bedienung der Hydraulik und eine spätere Wartung benötigen Sie einen Freiraum von mind. 60 cm zur Vorderseite (Regler) und zu einer Seite (siehe Abbildung).

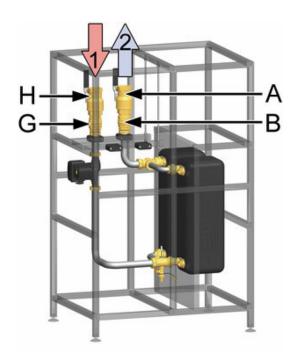
7. Verrohren Sie die Frischwasserstation mit der Anlage gemäß der untenstehenden Abbildung. Im Auslieferungszustand sind die Kugelhähne und Kolbenventile geschlossen, damit keine Verschmutzungen in die Station gelangen.

Die Trinkwasserseite ist zusätzlich mit Kappen verschlossen, um Verunreinigungen zu vermeiden.

Achten Sie vor Anschluss der Verrohrung darauf, dass die Anschlüsse frei von Verschmutzungen sind.

- 1 **Primärseite: Vorlauf vom Pufferspeicher**Anschluss: 1½" IG, flachdichtend, Verrohrung:
 mind. DN 40, 42 x 1,5 mm, max. Länge 4 m
 Entlüftung am höchsten Punkt beachten!
- 2 **Primärseite: Rücklauf zum Pufferspeicher**Anschluss: 1½" IG, flachdichtend, Verrohrung:
 mind. DN 40, 42 x 1,5 mm, max. Länge 4 m
 Entlüftung am höchsten Punkt beachten!
- 3 **Sekundärseite: Kaltwasser-Eintritt**Anschluss: 1¾" AG, flachdichtend
- 4 **Sekundärseite: Warmwasser-Austritt**Anschluss: 1¾" AG, flachdichtend
- 5 **Sekundärseite:**

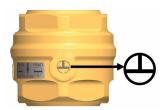
Warmwasser-Zirkulation, Rücklauf Anschluss: 11/4" AG, flachdichtend


18 9964075x-mub-de - V02 05/2024

7 Inbetriebnahme [Fachmann]

HINWEIS

Öffnen Sie die Ventile in den Leitungen und im Modul langsam, um Druckschläge zu vermeiden.

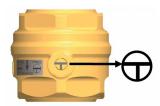

Funktion Schwerkraftbremse

Die Kugelhähne (A) und (H) im Primärkreis sind mit Schwerkraftbremsen (B) und (G) ausgestattet, um eine unerwünschte Schwerkraftzirkulation zu verhindern.

Zum Entlüften und Spülen der Anlage müssen die Schwerkraftbremsen geöffnet sein. Drehen Sie die Aufstellbolzen an den Schwerkraftbremsen in die Position **180°**. Die Schwerkraftbremse ist außer Betrieb.

Für den Betrieb der Anlage müssen alle Kugelhähne und Ventile komplett geöffnet sein und die Schwerkraftbremsen wieder geschlossen werden (Position **0°**).

Schwerkraftbremse (Normale Flussrichtung im Bild: abwärts)



Position 0° ("Betrieb")

Schwerkraftbremse in Betrieb,

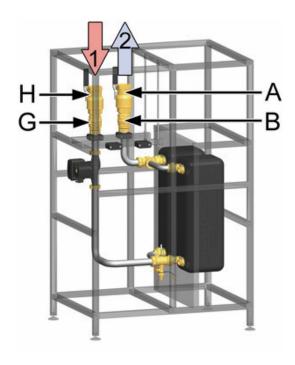
Durchströmung nur in Flussrichtung.

Position 180° ("Offen")

Schwerkraftbremse außer Betrieb,

Durchströmung in beide Richtungen.

7.1 Füllen des Primärkreises


WARNUNG

Verbrühungsgefahr durch heißes Wasser!

Das System steht unter Druck. Durch Öffnen des Sicherheits- / Entlüftungsventils kann bis zu 90 °C heißes Wasser austreten, das zu Personenschaden führen kann.

▶ Öffnen Sie jedes Ventil langsam und mit ausreichendem Abstand.

Bei (teilweise) gefülltem Speicher

Primärkreis

- 1. Öffnen Sie langsam die Kugelhähne (A) und (H).
- Stellen Sie die Schwerkraftbremsen (B) und (G) an den Aufstellbolzen auf (180°, siehe Kapitel Inbetriebnahme).
- Füllen Sie den Speicher mit bauseits vorhandenen Befüllarmaturen auf, bis Sie einen Betriebsdruck von ca. 1,5 bar* erreicht haben.
 Verwenden Sie Heizungswasser gemäß VDI 2035 / ÖNorm H5195-1.
- 4. Entlüften Sie das Rohrleitungssystem an den bauseits dafür vorgesehenen Stellen.
- Kontrollieren Sie nach dem Entlüften den Betriebsdruck des Speichers und erhöhen Sie ggf. den Druck.
- Bringen Sie die Schwerkraftbremsen (B) und (G) in Betriebsstellung (O°, siehe Kapitel Inbetriebnahme).

Ausschlaggebend für den Druck sind zusätzlich die bauartbedingten Systemdrücke und die Komponenten der Heizungsanlage!

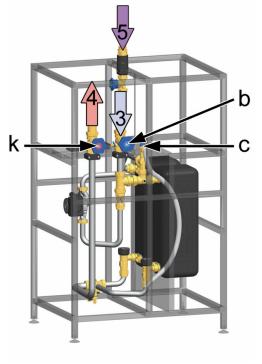
^{*1,5} bar im Primärkreis = empfohlener Mindestwert

7.2 Inbetriebnahme des Reglers

WARNUNG

Gefahr für Leib und Leben durch Stromschlag!

▶ Überprüfen Sie, ob die Sensoren und die Pumpen an den Regler angeschlossen sind und das Reglergehäuse geschlossen ist.


Stecken Sie den Netzstecker erst dann in eine Steckdose.

- Stellen Sie die korrekte Einbindung der Frischwasserstation in den Potenzialausgleich der Anlage sicher.
- 2. Schließen Sie die Frischwasserstation an das Stromnetz (230 V, 50 Hz) an.
- Führen Sie die Inbetriebnahme des Reglers durch (siehe Regleranleitung, Kapitel *Inbetriebnahme*).
 Schalten Sie anschließend im Handbetrieb die Pumpe ein (= 100 %), siehe Regleranleitung, Kapitel *Automatik/Handbetrieb*).
- 4. Lassen Sie die Pumpe für einige Minuten laufen, um die Frischwasserstation zu entlüften.
- Wenn Sie keine Luftgeräusche mehr hören, schalten
 Sie die Primärpumpe ab.

Stellen Sie dazu im Menü Automatik/Handbetrieb die Pumpe wieder auf "Automatik".

Sekundärkreis

- 6. Öffnen Sie langsam die Kolbenventile (b) und (k) auf der Sekundärseite.
- 7. Öffnen Sie mindestens eine Trinkwarmwasser-Zapfstelle (z.B. Wasserhahn) mit einem Durchfluss von mindestens 10 l/min und lassen Sie das Wasser ca. 2 Minuten lang laufen, um den Sekundärkreis zu entlüften.
 - Schließen Sie danach alle Zapfstellen im Sekundärkreis.
- Um den Wärmetauscher zu entlüften, kann das Sicherheitsventil (c) betätigt werden.
- Kontrollieren Sie die Station auf Dichtheit und achten Sie darauf, dass kein Wasser in die elektronischen Komponenten gelangt.
- Stellen Sie die gewünschte
 Trinkwarmwassertemperatur am Regler ein (siehe Kapitel Solltemperatur).
- 11. Das Frischwassermodul ist jetzt betriebsbereit.

7 Inbetriebnahme [Fachmann]

7.3 Einstellen der Temperatur

Die gewünschte (maximale) Trinkwarmwassertemperatur stellen Sie am Regler unter **"Hauptmenü / Warmwasser / Solltemperatur"** ein (siehe Regleranleitung, Kapitel *Warmwasser*).

WARNUNG

Verbrühungsgefahr durch heißes Wasser!

Damit ein Verbrühen am Wasserhahn ausgeschlossen ist, sollte die Warmwassertemperatur **60 °C** nicht übersteigen.

Tipp für Komfortoptimierung: Bei hohen Puffertemperaturen (z.B. Solarbetrieb) sollte die Warmwassertemperatur möglichst hoch (max. 60 °C) eingestellt werden.

Primärseite

Die primärseitig erforderliche Temperatur im Pufferspeicher ist abhängig von der gewünschten Warmwassertemperatur sowie der benötigten Zapfmenge. Die Temperatur im Pufferspeicher muss mindestens 5 K über der gewünschten Warmwassertemperatur liegen.

Sekundärseite

Der mögliche Zapfvolumenstrom [l/min] am Wasserhahn ist abhängig von der im Regler eingestellten Warmwasser-Temperatur und der zur Verfügung stehenden Temperatur im Speicher.

Systembedingt bringen starke Änderungen des Trinkwasser-Volumenstroms Schwankungen der Warmwasser-Auslauftemperatur mit sich. Diese Schwankungen werden jedoch in der Regel durch das Rohrnetz im Gebäude bzw. Beimischen an den Gebrauchsarmaturen geglättet.

Der empfohlene maximale Trinkwasser-Volumenstrom durch das Frischwassermodul beträgt ~130 l/min.

7.4 Maximaler Zapfvolumenstrom

eratur	atur	stung*	eistung	iter WW		Zulauf (Kaltv		-	eratur
Speichertemperatur	Solltemperatur	max. Schüttleistung*	Übertragungsleistung	erf. V _{Speicher} pro Liter WW	40°C	45 °C	50°C	55 °C	Rücklauftemperatur
45 °C	40 °C	85 l/min	178 kW	1,2 l	-	-	-	-	19 ℃
50 °C	40 °C	110 l/min	230 kW	0,9	-	-	-	-	17 ℃
30 C	45 ℃	82 l/min	199 kW	1,2 l	95 l/min	_	-	-	21 °C
	40 °C	130 l/min***	272 kW	0,8 l	-	-	-	-	15 ℃
55 °C	45 °C	104 l/min	254 kW	1,0 l	121 l/min	-	-	-	18 °C
	50 °C	79 l/min	220 kW	1,3 l	105 l/min	89 l/min	-	-	23 °C
	40 °C	130 l/min***	272 kW	0,7 l	-	-	-	-	14 °C
60 °C	45 °C	123 l/min	300 kW	0,8 I	143 l/min	-	-	-	16 °C
00 C	50 °C	100 l/min	278 kW	1,0 l	132 l/min	113 l/min	-	-	19 ℃
	55 ℃	77 l/min	241 kW	1,3 l	115 l/min	98 l/min	86 l/min	-	25 ℃
	40 °C	130 l/min***	272 kW	0,6 l	-	_	-	-	13 ℃
	45 °C	130 l/min***	317 kW	0,7 I	151 l/min	-	-	-	15 ℃
65 °C	50 °C	117 l/min	325 kW	0,91	155 l/min	132 l/min	-	-	17 °C
	55 ℃	96 l/min	301 kW	1,0 l	143 l/min	123 l/min	107 l/min	-	21 °C
	60 °C	75 l/min	261 kW	1,3 l	124 l/min	106 l/min	93 l/min	83 l/min	27 ℃
	40 °C	130 l/min***	272 kW	0,5 l	-	-	-	-	13 °C
	45 °C	130 l/min***	317 kW	0,6 l	151 l/min	-	-	-	14 °C
70 °C	50 °C	130 l/min***	363 kW	0,7 l	173 l/min	148 l/min	-	-	16 °C
	55 ℃	112 l/min	350 kW	0,91	167 l/min	143 l/min	125 l/min	-	19°C
	60 °C	93 l/min	324 kW	1,1	154 l/min	132 l/min	115 l/min	103 l/min	22 °C

7 Inbetriebnahme [Fachmann]

atur	1	*Bun	stung	er WW		Zulauf (Kalty		-	atur
Speichertemperatur	Solltemperatur	max. Schüttleistung [*]	Übertragungsleistung	Übertragungsleistung erf. V _{Speicher} pro Liter WW	40 °C	45 °C	50°C	55 °C	Rücklauftemperatur
	40 °C	130 l/min***	272 kW	0,5 l	-	-	-	-	12 °C
	45 °C	130 l/min***	317 kW	0,6 l	151 l/min	-	-	-	14 °C
75 °C	50 °C	130 l/min***	363 kW	0,7 l	173 l/min	148 l/min	-	-	15 ℃
	55 ℃	125 l/min	394 kW	0,8 l	188 l/min	160 l/min	140 l/min	-	17 °C
	60 °C	107 l/min	375 kW	0,91	179 l/min	153 l/min	133 l/min	119 l/min	20 °C
	40 °C	130 l/min***	272 kW	0,4	-	-	-	-	12 °C
	45 ℃	130 l/min***	317 kW	0,5 l	151 l/min	-	-	-	13 °C
80 °C	50 °C	130 l/min***	363 kW	0,6 l	173 l/min	148 l/min	-	-	14 °C
	55 ℃	130 l/min***	408 kW	0,7	195 l/min	166 l/min	145 l/min	-	16 °C
	60 °C	120 l/min	419 kW	0,81	200 l/min	171 l/min	149 l/min	133 l/min	18 °C
	40 °C	130 l/min***	272 kW	0,4	-	-	-	-	12 °C
	45 ℃	130 l/min***	317 kW	0,5 l	151 l/min	-	-	-	13 °C
85 °C	50 ℃	130 l/min***	363 kW	0,6 l	173 l/min	148 l/min	-	-	14 °C
	55 ℃	130 l/min***	408 kW	0,61	195 l/min	166 l/min	145 l/min	-	15 °C
	60 °C	130 l/min***	453 kW	0,7	216 l/min	185 l/min	162 l/min	144 l/min	17 °C
	40 °C	130 l/min***	272 kW	0,4	-	-	-	-	12 °C
	45 ℃	130 l/min***	317 kW	0,4	151 l/min	-	-	-	12 °C
90 °C	50 °C	130 l/min***	363 kW	0,5 l	173 l/min	148 l/min	-	-	13 °C
	55 ℃	130 l/min***	408 kW	0,6 l	195 l/min	166 l/min	145 l/min	-	14 °C
	60 °C	130 l/min***	453 kW	0,7	216 l/min	185 l/min	162 l/min	144 l/min	16 °C

eratur	ıtur	istung*				Zulauf (Kaltv		•	eratur
Speichertemperatur	Solltemperatur	max. Schüttleistung [*]	Übertragungsleistung	erf. V _{Speicher} pro L	40°C	45 °C	50 °C	55 °C	Rücklauftemperatur
	40 °C	130 l/min***	272 kW	0,4 l	-	-	-	-	11 °C
	45 °C	130 l/min***	317 kW	0,4	151 l/min	-	-	-	12 °C
95 °C	50 °C	130 l/min***	363 kW	0,5 l	173 l/min	148 l/min	-	-	13 °C
	55 ℃	130 l/min***	408 kW	0,6 l	195 l/min	166 l/min	145 l/min	-	14 °C
	60 °C	130 l/min***	453 kW	0,6 l	216 l/min	185 l/min	162 l/min	144 l/min	15 °C

- * Die maximale Schüttleistung ist abhängig von dem Druckverlust auf der Primärseite.
- ** Die maximale Zapfmenge ist abhängig von der Länge und Isolierung der Rohrleitungen.
- *** maximaler Volumenstrom: 130 l/min, Druckverlust der Friwa dabei 1000 mbar (höhere Werte hydraulisch nur bedingt möglich, Messgrenze des Volumenstromsensors ~ 133 l/min)

Lesebeispiel:

65 °C im Heizungsspeicher (primär) und 50 °C am Regler eingestellte Solltemperatur (sekundär):

- Bei 65 °C Speichertemperatur können max. 117 Liter Trinkwasser/Minute auf 50 °C erwärmt werden.
- Diese Entnahme entspricht einer Leistung von 325 kW.
- Um 1 Liter (bzw. 100 Liter) Warmwasser von 50 °C zu erzeugen, müssen im Heizungs-Pufferspeicher 0,9 Liter (bzw. 90 Liter) mit 65 °C zur Verfügung stehen.
- Diese 117 Liter Warmwasser/Minute mit 50 °C können am Wasserhahn (Mischventil) mit kaltem Wasser (10 °C) auf 132 Liter/Minute (mit 45 °C) "gestreckt" werden.
- Die primäre Rücklauftemperatur bei Entnahme von 117 Litern Warmwasser/Minute beträgt 17 °C.

8 Instandhaltung

Die Frischwasserstationen von PAW sind wartungsarm. Dennoch fallen folgende Arbeiten an, welche in regelmäßigen Abständen durchgeführt werden sollten. Dafür empfehlen wir den Abschluss eines Wartungsvertrages mit der PAW GmbH & Co. KG.

HINWEIS

Hygieneempfehlung

Bei Temperaturen unter 60 °C können sich Legionellen entwickeln. Nach längerer Standzeit wie z.B. Urlaub wird empfohlen, alle Leitungen für einige Minuten gründlich zu spülen.

8.1 Inspektion

Die folgende Tabelle gibt Empfehlungen für die Häufigkeit der Inspektionsmaßnahmen an.

Bauteil	Prüfung	Intervall
Rohrleitungen	 Sichtprüfung auf Dichtigkeit, Korrosion und andere schädigende Einwirkungen Kontrolle der Dämmung Bei demontierbaren Abschnitten: Kontrolle auf Steinbildung oder Korrosion von innen 	Jährlich
Wärmetauscher (Dichtheit der Trennwände)	Kontrolle des Anlagendrucks auf der Primärseite	Halbjährlich
Wärmetauscher (Steinbildung)	 Vergleich der eingestellten mit der tatsächlichen Warmwassertemperatur 	Halbjährlich
Geräuschbildung	 Beim Zapfvorgang Station auf kritische Geräusche prüfen, bspw. Lufteinschluss 	Halbjährlich
Temperatur- / Volumenstromsensoren	 Abgleich der Angaben auf Display und Prüfung auf Plausibilität 	Halbjährlich
Elektronische Komponenten und Steckverbindungen	 Die Kabelsteckverbindungen aller Komponenten auf festen Sitz und Unversehrtheit prüfen 	Halbjährlich

8.2 Wartung

Die folgende Tabelle gibt Empfehlungen für die Häufigkeit der Wartungsmaßnahmen an.

Bauteil	Prüfung	Intervall
Sicherheitsventil	Kontrolle auf Dichtigkeit durch manuelles Betätigen	Halbjährlich
	 Betätigung der Anlüftvorrichtung, um sicherzustellen, dass das Ventil nicht haftet oder verkalkt ist 	
	 Prüfen, ob das Ventil nach Betätigung automatisch schließt und das Wasser vollständig abläuft 	
Absperrarmaturen	 Durch Öffnen und Schließen auf Gängigkeit prüfen 	Jährlich
Rücklaufeinschichtungs- Ventil	 Prüfen der Funktionalität durch manuelles Aktivieren des Relais im Menü "Automatik-/ Handbetrieb" 	Halbjährlich

Reinigen Sie die Station mit einem feuchten Tuch ohne Reinigungsmittel.

WARNUNG

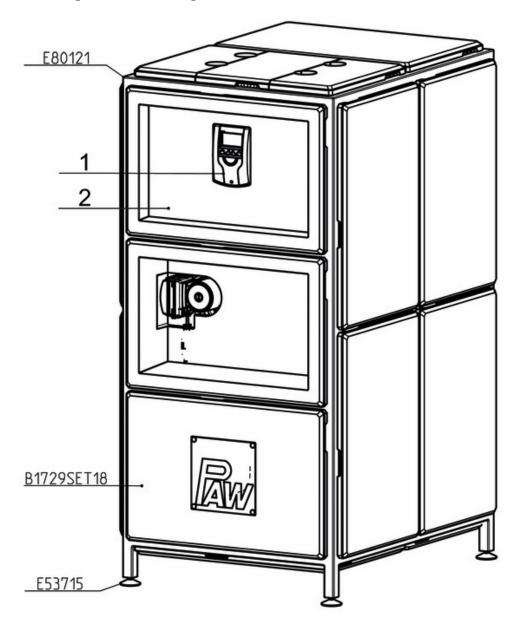
Gefahr für Leib und Leben durch heiße Medien!

Je nach Bedingungen können im Produkt Temperaturen bis 95 °C entstehen und austreten. Es besteht die Gefahr von Verbrennungen!

- ▶ Bei allen Service-, Wartungs- oder Reparaturarbeiten ist darauf zu achten, dass Sie mit den erforderlichen Schutzausrüstungen (Handschuhe / Brille) ausgerüstet sind.
- Vor Service-, Wartungs- oder Reparaturarbeiten soll das Produkt außer
 Betrieb genommen werden und abgekühlt sein.

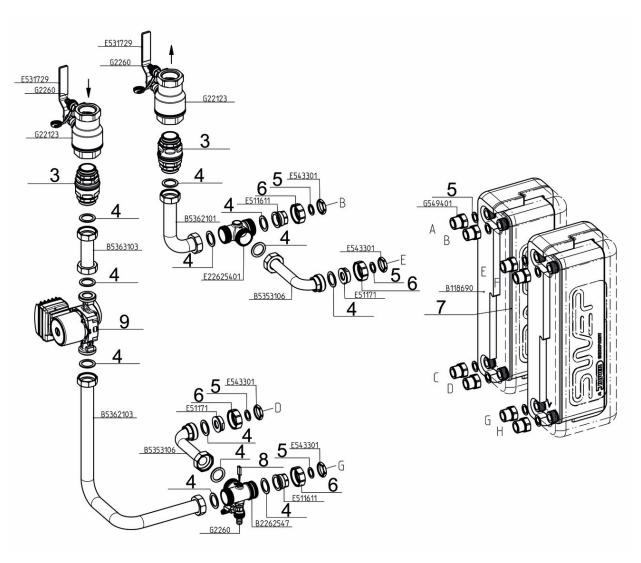
28 9964075x-mub-de - V02 05/2024

9 Lieferumfang [Fachmann]

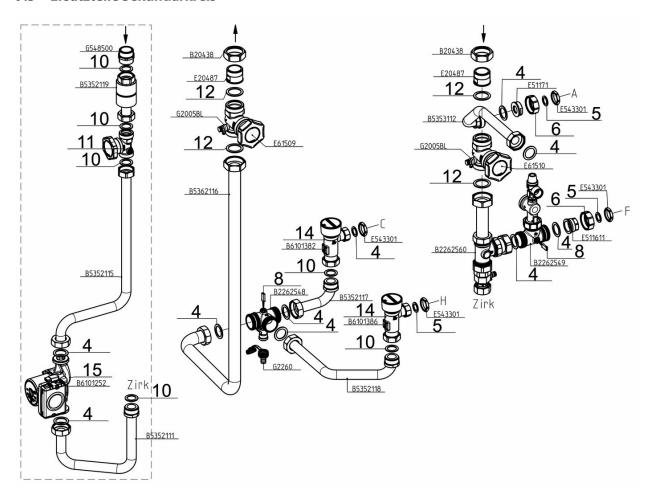

HINWEIS

Seriennummer

Reklamationen und Ersatzteilanfragen/-bestellungen werden ausschließlich unter Angabe der Seriennummer bearbeitet!


Die Seriennummer befindet sich auf dem Halteblech der Station.

9.1 Ersatzteile Regler und Isolierung



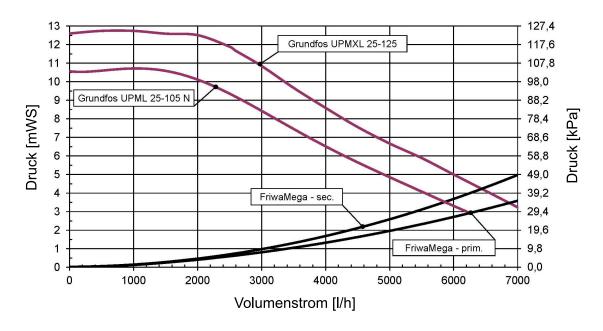
9.2 Ersatzteile Primärkreis

9 Lieferumfang [Fachmann]

9.3 Ersatzteile Sekundärkreis

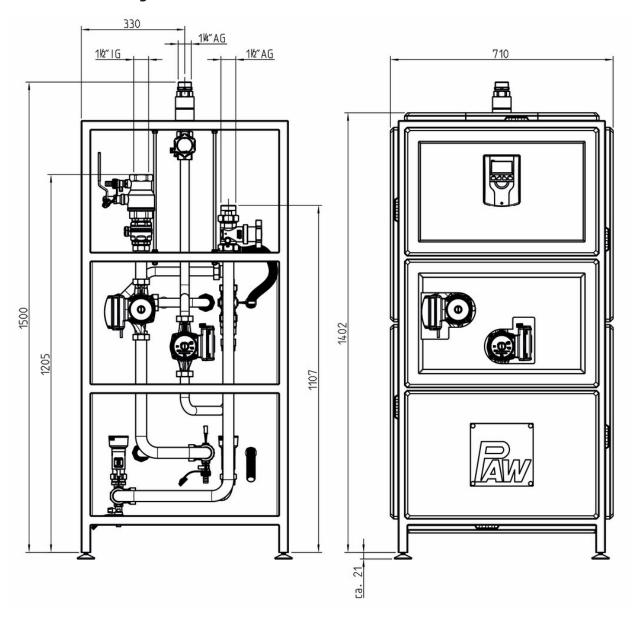
Der gekennzeichnete Hydraulikstrang entspricht der Version mit Zirkulation.

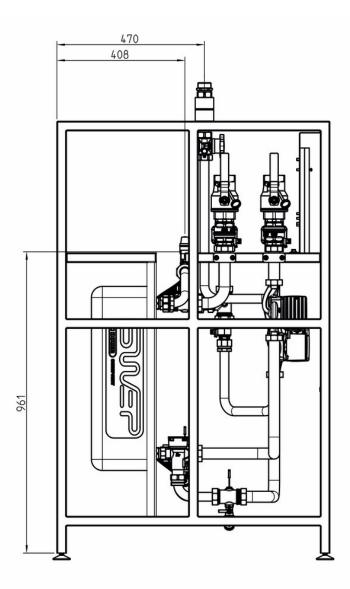
Position	Ersatzteil	Artikelnr.
1	Regler FC3.10	N00597
2	EPP Einsatz Friwa Mega mit Ausschnitt für Regler	N00449
3	Schwerkraftbremse DN 40, 2x 1½" AG, O-Ring, 450 mm WS	N00368
4	Dichtung 44.0 x 32.0 x 2.0, 1", für Verschraubung 1½", AFM,10 Stk.	N00036
5	Dichtung 30.0 x 21.0 x 2.0, ½", für Verschraubung 1", AFM, 10 Stk.	N00024
6	Überwurfmutter G 1½", Durchgang 42 mm, SW 52, 8-kant	N00269
7	Wärmetauscher Kupferlot, mit Dichtungen, für Station 6407511, 6407517	N00601
	Wärmetauscher beschichtet, mit Dichtungen, für Station 6407530, 6407535	N00281
8	Temperatursensor Pt1000, Einschraubsensor 15 mm, G¼", mit Anschlussleitung	N00360
9	Grundfos UPMXL 25-125, 1½" AG, 180 mm, mit Dichtungen	N00367
10	Dichtung 38.0 x 27.0 x 2.0, ¾", für Verschraubung 1¼", AFM, 10 Stk.	N00174
11	Kolbenventil DN 25, 2x 1¼" AG, mit Dichtungen	N00574
12	Dichtung 50.0 x 38.0 x 2.0, 1½", für Verschraubung 1¾", AFM, 10 Stk.	N00187
13	Sicherheitsventil ½" x ¾"; MSV 10 bar	N00008
14	Flow Sonic DN 25, 1" Überwurfmutter x 1¼" Überwurfmutter, inkl. Pt1000, mit Dichtungen und Sensorleitung	N00277
15	Zirkulationspumpe Grundfos UPML 25-105 N, 1½" AG, mit Dichtungen, für Station 6407517, 6407535	N00357


10 Technische Daten

Station	FriwaMega
Abmessungen	
Höhe (inkl. Isolierung)	1402 mm + Verstellung der Gestellfüße ca. 15 mm
Höhe (mit Zirkulationsset)	1500 mm + Verstellung der Gestellfüße ca. 15 mm
Breite (inkl. Isolierung)	710 mm
Tiefe (inkl. Isolierung)	920 mm
Achsabstand Primärkreis	158 mm
Achsabstand Sekundärkreis	158 mm
Rohranschlüsse	
Primärkreis (Speicherkreis)	1½" IG
Sekundärkreis (Trinkwasserkreis)	1¾" AG, flachdichtend
Betriebsdaten	
Maximal zulässiger Druck	primär: 3 bar, sekundär: 10 bar
Betriebstemperatur	2 – 95 °C
Ausstattung	
Schwerkraftbremse	primär: 2 x 450 mmWS, aufstellbar
Primärpumpe	HE-Pumpe mit PWM-Ansteuerung, 3-180 W
Sekundärpumpe	(optional)
6407517 / 6407535	HE-Pumpe mit PWM-Ansteuerung, 6-140 W
Wärmetauscher	2 x 60 Platten
Volumenstromsensor	sekundär: 2 x FlowSonic, Messbereich: 1-130 l/min
Temperatursensor	3 x Pt1000, flink
Werkstoffe	
Armaturen	Messing
Dichtungen: O-Ringe	EPDM
Flachdichtungen	EPDM / AFM 34

Station	FriwaMega		
Plattenwärmetauscher	unbeschichtet: Edelstahl 1.4401 / Lot: 99,99 % Cu		
	beschichtet: SiO ₂		
Isolierung	EPP		
Schwerkraftbremse	Messing		


10.1 Druckverlust- und Pumpenkennlinien


34 9964075x-mub-de - V02 05/2024

10.2 Maßzeichnung

11 Entsorgung

HINWEIS

Elektro- und Elektronikgeräte dürfen nicht mit dem Hausmüll entsorgt werden.

Zur Rückgabe stehen in Ihrer Nähe kostenfreie Sammelstellen für Elektroaltgeräte sowie ggf. weitere Annahmestellen für die Wiederverwendung der Geräte zur Verfügung. Die Adressen erhalten Sie von Ihrer Stadt- bzw. Kommunalverwaltung.

Sofern das alte Elektro- bzw. Elektronikgerät personenbezogene Daten enthält, sind Sie selbst für deren Löschung verantwortlich, bevor Sie es zurückgeben.

Batterien und Akkus müssen vor der Entsorgung des Produkts ausgebaut werden. Je nach Produktausstattung (mit zum Teil optionalem Zubehör) können einzelne Komponenten auch Batterien und Akkus enthalten. Bitte beachten Sie hierzu die auf den Komponenten angebrachten Entsorgungssymbole.

Entsorgung von Transport- und Verpackungsmaterial

Die Verpackungsmaterialien bestehen aus recycelbaren Materialien und können dem normalen Wertstoffkreislauf wieder zugeführt werden.

12 Inbetriebnahmeprotokoll

Anlagenbetreiber					
Anlagenstandort					
Seriennummern:					
 Frischwassermodul 					
 Volumenstromsensor 					
• Regler					
Software-Version					
Rohrleitung primär	Durchmesser =	mm;	Länge =	m	
Rohrleitung sekundär	Durchmesser =	mm;	Länge =	m	
Rohrleitung Zirkulation	Durchmesser =	mm;	Länge =	m	
Sonstige Einbauten	☐ Rücklaufverteilungsset				
	☐ Sonstiges				
Sind beide Kreise ordnungsgemä	☐ entlüftet				
der Pumpe)					
Sind sämtliche Absperrarmaturer	☐ geöffnet				
Ist auf der Primärseite ein Druck v	☐ geprüft				
Ist auf der Sekundärseite ein Druc	☐ geprüft				
Ist der Potenzialausgleich vorschriftsmäßig ausgeführt?				☐ geprüft	
Wird eine Fehlermeldung im Display angezeigt?				☐ keine Meldung	
Installationsbetrieb		Datum,	Unterschrift		

13 Notizen

Art.Nr. 9964075x-mub-de
Original-Anleitung
Technische Änderungen vorbehalten!
Printed in Germany – Copyright by PAW GmbH & Co. KG

PAW GmbH & Co. KG Böcklerstraße 11 31789 Hameln, Germany www.paw.eu

Tel: +49-5151-9856-0 Fax: +49-5151-9856-98